

Contributions à la Gestion de l'Hétérogénéité dans les Environnements Distribués et Pervasifs

Luiz Angelo STEFFENEL

Habilitation à Diriger des Recherches Soutenance publique Reims, 8 décembre 2017

What is a Distributed System?

Most definitions consider at least these properties
Independent elements, loosely coupled (nodes, machines)
Coordination is made by message exchange
Resources state and capabilities may vary over time

Heterogeneity

What is Heterogeneity?

- Noun the quality or state of consisting of dissimilar or diverse elements
- There is not only one kind of heterogeneity
 - Diversity in a group
 - Diversity of groups
- Dealing with heterogeneity can be compared to a puzzle-solving problem

Heterogeneity in Distributed Systems

- Different views and classifications can be used, for example:
 - Material heterogeneity
 - Communication heterogeneity
 - Task heterogeneity
 - Data access heterogeneity
 - Variations through time
- The complexity tends to augment as the systems grow

Towards Pervasive Computing

Cloud, Mobile computing and IoT induce even more heterogeneity

- Distant resources that are "somewhere" in the cloud
- Mobile devices that move through the networks
- Material diversity and capacity constraints

My Motivation

- To investigate and to develop (elegant) solutions for problems caused by heterogeneity
 - Sub-optimal performances
 - Lack of adaption, lack of context-awareness
 - Uncertainty about the resources (volatility, discovery, etc.)
 - Bad scheduling or placement of tasks and services

Contributions to Heterogeneity Management

- Modeling and optimizing communication heterogeneity for grids
- Dealing with task heterogeneity when parallelizing a biology application
- Context-awareness techniques for resources dynamicity
- Middleware development experiences

Communication Heterogeneity Modeling and Optimizing Collective Communications

Contributions à la Gestion de l'Heterogeneité dans les Environnements Distribués et Pervasifs

Modeling communications

- Communication heterogeneity impacts the coordination of nodes
- In local networks we can approximate these costs
 - Just need a good model and good parameters
 - For example, the Broadcast (one-to-many) communication pattern

Broadcasts in grids

- In a grid, we have different network performances
 - Between clusters
 - Inside clusters
- One single model cannot represent all variations
- For simplicity, we can structure in 2 levels
 - Internal chose the best algorithm from a set of existing models/implementations
 - Inter-cluster specially tailored broadcast tree that interconnects "cluster heads"

Broadcasts in grids - heuristics

- We need to construct an ad-hoc broadcast tree
- Select the "next cluster head" according to different optimization rules
 - Faster nodes

. . .

- Minimize intra-cluster comm
- Maximize source nodes

What about All-to-All?

- All-to-All is a more complex pattern
 - n(n-1) different data to send through the network
 - 2n messages over the inter-cluster link (slow)
 - Highly impacted by network contention
- Why not regroup all msgs for a destination **before** sending them?
- LG algorithm
 - Defines "corresponding" peers
 - Minimizes contention

Task Heterogeneity

Parallelizing a bioinformatics application

Contributions à la Gestion de l'Heterogeneité dans les Environnements Distribués et Pervasifs

Motivation

Subject of a PhD thesis in Bioinformatics

- Romain Vasseur Inverse Docking
- Used in drugs research by the pharmaceutic industry
- In this case, the "reference" application is a "monolithic" simulator
- We seek to explore databases with hundreds of proteins
 - One protein-peptide docking exploration may take hours
- How to parallelize it without touching the simulator code?

Parallelizing the Molecular Docking

- Solution: divide the data... But how?
 - Geometric decomposition
 - With superposition
- Development of AMIDE, a framework for data decomposition and task scheduling
 - Workflow for generating subgrids and deploying tasks
 - Can be used both in an ad-hoc environment or through a resource manager (like Slurm)

Context Adaption

Improving Apache Hadoop

Contributions à la Gestion de l'Heterogeneité dans les Environnements Distribués et Pervasifs

Improving Apache Hadoop

Hadoop was designed to operate in clusters

- Static and stable configuration (XML files)
- Does not react to changes in the resources capabilities

There is no "live" adaption

- Project PER-MARE aimed at deploying Hadoop over pervasive networks
 - Heterogeneous nodes (SoC, desktop grids, etc.)
 - Volatile nodes
- We need context information

Acquiring and Injecting Context Information

- The *ResourceManager* is the source of information for the schedulers
 - Its data comes from XML config files
- We created a context collector that updates the information through Zookeeper

Impact of Context Change

2 nodes with the configuration of 4 nodes

4 nodes ok

2 nodes Context updated from beginning

2 nodes Context updated after the execution started

Middleware Development Learning steps

Contributions à la Gestion de l'Heterogeneité dans les Environnements Distribués et Pervasifs

The Experience of GRAPP&S

- Subject of a co-tutelle PhD
 - Originally aimed to extend CONFIIT
- Tentative to specify an overlay for transparent data access
- The work never advanced beyond the specification phase
 Over time, other APIs filled the gap (Apache Jena, etc.)
- Many possibilities that were never explored
 - Data relocation (like a "dynamic" Amazon Glacier)
 - Development and test of proxies
 - format identification standards (MIME, RDF, etc.)

The CloudFIT framework

- PaaS computing framework based on P2P overlays
- Designed for computing on pervasive environments (PER-MARE project)
 - Fault tolerance
 - Decentralized scheduling
 - DHT storage with replication
- Modular and Extensible
 - Different P2P overlays
 - Context, scheduling, IoT
- FIT API
 - 1. How many tasks?
 - 2. What a task must do?
 - Which data to access, which actions
 - Optional task dependency (DAGs)

CloudFIT at work

- Map-Reduce applications (benchmark against Hadoop)
- Ozone Secondary Events (OSE) detection
 - **Drastic reductions** on the ozone column that may reach medium latitudes and cause high UV exposition to the population
 - Caused by air masses that detach from the polar vertex
 - We created an OSE detection workflow

CloudFIT at work

- Map-Reduce applications (benchmark against Hadoop)
- Ozone Secondary Events (OSE) detection
 - **Drastic reductions** on the ozone column that may reach medium latitudes and cause high UV exposition to the population
 - Caused by air masses that detach from the polar vertex
 - We created an OSE detection workflow

CloudFIT Perspectives

- Focus on fog/edge computing
 - Development of multi-scale applications
 - Context-awareness and automatic clustering to help task placement
- Data locality for big data applications
 - DHTs often spread data, losing locality
 - Access times may impact Big Data applications
 - Improve data locality through
 - Locality reinforcement (DHT trick)
 - Check if data is local (scheduling)

Conclusions and Perspectives

Contributions à la Gestion de l'Heterogeneité dans les Environnements Distribués et Pervasifs

Research Summary

Research Domains

Fog Computing and Pervasive environments

- Context adaption, virtualization and microservices
- Integration with SDN

Internet of Things and Smart Cities

- Smart Agriculture
- Energy consumption monitoring
- Green IT

Distributed Computing and Big Data

- Integration with fog computing applications and IoT
- Exploration of new tools (Apache Storm, ...)
- Data handling and analysis

Administration Responsibilities

Thank you for your attention

Contributions à la Gestion de l'Hétérogénéité dans les Environnements Distribués et Pervasifs Luiz Angelo Steffenel

Academic titles

- PhD in Computer Science
 - Institut National Polytechnique de Grenoble, France 2005
 - Subject: Modeling and Optimization of Collective Communications in a Grid
 - Supervisors: Denis Trystram and Grégory Mounié
- Doctoral School in Communication Systems 2002
 - EPFL Lausanne, Switzerland
 - Subject: Algorithms for Distribute Membership (Fault Tolerance)
 - Supervisor: André Schiper
- MSc in Computer Sciences 2001
 - Universidade Federal do Rio Grande do Sul, Brazil
 - Subject: Algorithms for the Consensus agreement problem (Fault Tolerance)
 - Supervisor: Ingrid Jasch Porto

Molecular Docking 101

- Molecular docking is a simulation technique to identify good binding conformances between two molecules
 - In our case, protein-peptide
- A "blind docking" consists in trying multiple arrangements and comparing the energy score
- Good coverage need hundreds of tentatives
- The data provided has two 3D grids:
 - The location (and energy) of each protein atom
 - The location (and energy) of each peptide atom

The Design of CloudFIT

